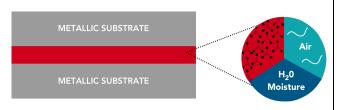
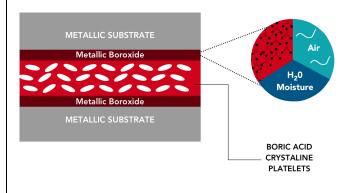


Method of Action

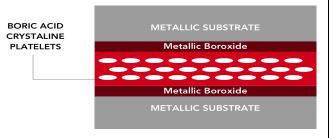


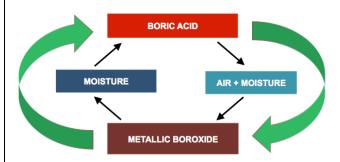

BORIC ACID IS INTRODUCED

Boric acid (H_3BO_3) is introduced to a metallic substrate in the presence of water (H_2O) .

INTERACTION

Covalent interaction between the metallic substrate, boric acid (H₃BO₃) and water (H₂O), forms a metallic boroxide (B₂O₃) boundary layer that bonds to the substrate, forming a corrosion-resistant barrier.


CRYSTALLINE PLATELETS


The remaining boric acid molecules form into layers of crystalline platelets, each of which is a triclinic lattice of molecules strongly bound together by a macromolecular ionic (electromagnetic) bond.

Any abraded metallic boroxide and crystalline platelets spontaneously react with available moisture, replenishing the free boric acid ($B_2O_3 + 3H_2O > 2H_3BO_3$).

ALIGNMENT

Aligned by the mechanical motion of the substrate, the platelets form stacked layers with very small (0.318 nm) spaces between.

LOW FRICTION

The inter-platelet layers are bound by weak "Van der Waals" forces, allowing a very low coefficient of friction.

SELF-RENEWING CYCLE

Interaction between free boric acid (H_3BO_3) , Metallic boroxide (B_2O_3) , air and moisture (H_2O) , leads to a self-replenishing cycle, filling in any abraded gaps in the metallic boroxide and crystalline platelets.

